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The parameter e used in the X~ method for approximating the electron exchange has been optimized 
for heavier atoms. The variation of the e-values with atomic number Z is analysed in terms of the 
Xcq~ method. Differences between closed shell and open shell system are discussed. 
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1. Introduction 

Slater's local statistical (Xe) approximation to the electron exchange [1] is 
widely used in solid state calculations and more recently also in the SCF-Xe- 
scattered-wave method [2] for polyatomic molecules and clusters. It has become 
quite common to optimize the exchange parameter  e for free atoms and then to 
use the same values in molecular and solid state calculations. These optimized 
c~-values are published [3] for the atoms H through Nb. 

The purpose of this paper  is threefold: (1) to provide optimized s-values 
for heavier atoms; this is desirable because the SCF-Xe-SW method is particu- 
larly useful for clusters with heavy atoms, as was demonstrated e.g. by Boring [4] 
for the uranyl ion UO~- § ; (2) to present an analysis of the Xe method in connec- 
tion with open shell and closed shell systems; and (3) to investigate the variation 
of the s-values with atomic number  Z in terms of the Xe/? method. 

2. Optimized 0t-Values for Heavier Atoms 

The same two criteria for optimization are used in this paper as have been 
used in Ref. [3] for the lighter atoms: (1) satisfaction of the virial theorem (evt); 
and (2) adjustment of the statistical total energy to the configuration averaged 
Hart ree-Fock (HF) total energy (env). The method, computation, and nomen- 
clature are the same as in Ref. [3]. F rom the experience with the lighter atoms 
we know that c~ varies linearly with atomic number  Z for any particular configu- 
rational sequence (i.e. atomic subshell). Therefore only atoms which correspond 
to the end-points in such a sequence or to special configurations are considered. 
The results are listed in Table 1 ; evt is also displayed in Fig. 1. For  the atoms which 
are not included in Table 1, a linear interpolation between the end-points of the 
corresponding subshell is sufficiently accurate for most purposes. 

* Dedicated to Professor H. Hartmann on the occasion of his 60 tla birthday. 
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Table 1. The optimized exchange parameters ~v~ and ~HF are 
in their ground state 

given for a number of heavier atoms 

Atom Configuration ~vt ~HF 

Mo 42 [Kr] +4d s 5s 0.70311 0.70341 
Tc 43 4d 5 5s 2 0.70269 0.70299 
Ru 44 4d v 5s 0.70227 0.70253 
Rh 45 4d 8 5s 0.70187 0.70217 
Pd 46 4d 1~ 0.70128 0.70158 
Ag 47 4d 1~ 5s 0.70114 0.70145 
Cd 48 4d 1~ 5s 2 0.70084 0.70114 
In 49 4d 1~ 5s 2 5p 0.70074 0.70102 

Xe 54 4d 1~ 5s 2 5p 6 0.69962 0.69984 
Cs 55 [Xe] + 6s 0.69939 0.69961 
Ba 56 6s 2 0.69906 0.69927 
La 57 5d 6s 2 0.69877 0.69898 
Ce 58 4 f  5d 6s z 0.69824 0.69845 
Pr 59 4 f  3 6s z 0.69742 0.69765 

Eu 63 4 f  7 6s 2 0.69549 0.69575 
Gd 64 4 f  7 5d 6s z 0.69543 0.69566 
Tb 65 4 f  8 5d 6s z 0.69501 0.69525 
Dy 66 4 f  1~ 6s z 0.69426 0.69453 

Yb 70 4 f  14 6s z 0.69292 0.69317 
Lu 71 4 f a ~ 5 d  6s 2 0.69302 0.69324 

Ir 77 4f~45d 7 6s 2 0.69296 0.69310 
Pt 78 4 f ~ 5 d  9 6s 0.69292 0.69306 
Au 79 4 f 1 4 5 d l ~  0.69288 0.69301 
Hg 80 4 f 1 ~ 5 d l ~  2 0.69278 0.69290 
T1 81 4 f l ~ 5 d l ~  0.69280 0.69289 

Rn 86 4 f 1,~ 5d 1 o 6s 2 6p6 0.69245 0.69248 
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Fig. 1 

3. Quantitative Explanation of the Variation of ~v, with Z 

T h e  Z - d e p e n d e n c e  o f  ~vt is g r ea t l y  r e d u c e d  for  a t o m s  wi th  Z l a rge r  t h a n  t h i r t y  

c o m p a r e d  w i t h  t h a t  for  l i gh t e r  a t o m s .  I t  is i n t e r e s t i n g  to  n o t e  t h a t  t h e  ~vt-values 

even  for  a t o m s  w i t h  Z a r o u n d  80 a re  s ign i f i can t ly  a b o v e  t w o - t h i r d s .  T h e s e  resu l t s  

can  be  u n d e r s t o o d  in  t e r m s  o f  t h e  X~f l  m e t h o d  [5, 6], in  w h i c h  the  e x c h a n g e  
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potential in the one-electron Schr6dinger equation is given by 

Vx~p-= Vx~[I + fl~G(~)] = Vxs[c~ + fl (1) 

where Vxs is Slater's original exchange potential [7] and G(0) is the inhomo- 
geneity correction as a function of the electron charge density 0 [5, 6] (the "con- 
verenee factors" [6, 8, 9, 11] for G(Q) have been omitted in the above equation, 
because they are irrelevant for the following arguments). 

It has been pointed out that in the Xafi method c~ can be fixed to two thirds 
and fl to 0.003 for all atoms in the periodic table [8-10]. This universal, Z-inde- 
pendent exchange approximation with a and fl fixed (indicated by F) will be 
denoted by XFafl-method [8]. 

In a qualitative way the variation of art with Z can be understood by recalling 
from the XFafl-method [6, 8] that close to the main peak of each individual orbital 

the inhomogeneity term ~fl G(0) exhibits a maximum. Thus, in the radial range 
a 

where the probability of finding a particular electron is large, the factor multi- 
plying Vxs can be considered as an effective exchange parameter for that orbital. 
This factor is always larger than two-thirds. 

Using this picture the deviation from two-thirds of the a-values in the Xa- 
method can be interpreted to be an average over the inhomogeneity contributions 
of all orbitals. The variation of a with Z can then be explained in the following 
way: For the lighter atoms G(Q) has only a few large peaks (one for every main 
shell, cf. Fig. 2 of Ref. [6]), but for heavier atoms the inhomogeneity becomes 
less pronounced, in the sense that G(0) has more peaks which are smaller in 
magnitude. Therefore ~ decreases with increasing Z. The fact that ~ remains 
above two-thirds indicates that even for the heavy atoms the inhomogeneity 
corrections are not negligible. A more quantitative explanation will be given 
in Section 5. 

4. Closed Shell and Open Shell Atoms 

Closed shell and open shell systems will be analyzed in this section by com- 
paring total energy terms of the HF-method and the statistical approximation 
(Xa and Xafi). This analysis should lead to a better understanding of the approxi- 
mations made in the Xa-method [12]. At the same time it can be found which 
terms have approximately the same value in the Xa or Xafl-method. Utilizing 
these results the variation of av, with atomic number can be explained quanti- 
tatively by the XFafl-method (Section 5). 

Using a short-hand notation the HF total energy can be written 

( H F )  = I + ~- F - . (2) 

For our purpose all terms will be evaluated using the HF expressions but with 
Xa (resp. Xafl) orbitals, which agree closely with HF orbitals. This scheme will 
be denoted by HF (Xa). The statistical total energy is given by 

1 1 2~(1) ~(2) dzld'r + ~_~0(1 ) Uxdz, (3) e.,= EI.,+ T r,2 
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or again in short hand notation: 

1-Eel + �89 x (4) E s t = I + 2  c 

(Rydberg atomic units are used throughout this paper). The three terms in 
Eqs. (2)-(4) denote in turn the one-electron-integral-, the electronic-Coulomb-, 
and the exchange-term. 

In the Xefl-method the exchange potential for the total energy U x (to be 
distinguished from Vx~ a of Eq. (1)) is given by 

Ux~a = [~e + 3/~G(Q)] Vxs. (5) 

The results are summarized for a closed shell system (neon, cf. Table 2) and 
an open shell system (fluorine, el. Table 3). The one-electron-integral terms (I) 
are the same for HF(Xe) and Xe. A comparison of these two schemes is made 
for (a) the Coulomb-, (b) the exchange-, (c) the Coulomb plus exchange-term, 
and (d) the total energy. 

In the Xe-method evt is the e-value for which the HF(Xe) virial theorem is 
satisfied by construction [3]. Within the Xe-method itself it is always valid because 
of the variational principle. Since the kinetic energy is the same for HF(Xe) 
and Xe, the corresponding total energies must be equal: 

(HZ(Xe,t))  = Est(Xe,,). (6) 

It also follows that for the two methods the Coulomb plus exchange energy must 
be equal for e~,, i.e. 

F -  G = E~ 1 + Ex~. (7) 
2 

All the equalities just mentioned can be seen in Tables 2 and 3 to be satisfied 
with reasonable accuracy. (It should be noted, however, that evt taken from 

Table 2. Comparison of total-energy-terms between HF(X~) resp. HF(XF~/~) and the statistical 
approximations X~ (with c~vt = 0.72997) and XF~]~ is tabulated for neon. The entries are: (1) the one- 
electron-integral term, (2) the electronic-Coulomb term, (3) the exchange-energy term, (4) the Coulomb 
plus exchange energy, and (5) the total energy. In the case of the Xc~-method a further breakup of the 
terms into contributions from each orbital is listed. For the XF~/~-method only the weighted sum is 

given 

HF Stat. ls 2s 2p Weighted sum 

Xo~vt XFa# 

I --99.78108 --22.16100 -20.20917 - 365.13918 - 364.63200 

F 46.70223 21.71090 21.26348 264.40714 263.32758 
E~ 46,70223 21.71090 21.26348 264.40713 263.32758 

-G/2 --12.40216 -- 3.41897 - 2.76987 - 48.26146 - 48.22270 
Ex~ ~ -11.75047 - 3.26804 - 3.03738 - 48.26128 - 49.49644 

F-G/2 34.30007 1 8 . 2 9 1 9 3  1 8 . 4 9 3 6 1  216.14567 215.10488 
E~ + Lx=B-- 34.95176 18.44286 18.22610 216.14585 213.83114 

( H F )  --82.63104 - 13.0t503 -- 10.96237 -257.06634 -257.07956 
Est --82.30520 --12.93957 --11.09612 --257.06626 --257.71643 
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Table 3. Comparison of total-energy terms for fluorine similar to Table 2. In the Xa-method 
av~ = 0.73651. For the XF ~fl-method the e and fl term of the exchange energy are listed separately. 
In addition to the entries of Table 2 the virial coefficient (ratio of potential to kinetic energy) is given 

HF X e~t XF~B Stat, X ct~ Xv~ ~ 

I -278.56858 -278.09937 I -278.56858 -278.09937 
F 197.71684 196.73422 E l 199.43519 198.43405 

Ex~ - 39.89128 - 36.03453 
Exa - 4.87184 

-G/2 - 38.17273 - 38.15074 Ex~ ~ - 39.89128 - 40.90637 
F-G~2 1 5 9 . 5 4 4 1 0  158.58348 El + Ex~p 159 .54391  157.52768 
I + �89 - 179.71016 - 179.73226 1 + �89 l - 178.85098 - 178.88234 
(HF) - 198.79652 - 198.80763 Es~ - 198.79662 - 199.33553 
vifial - 2.00000 - 1.99798 virial - 2.00000 - 2.00063 

Ref. [3] has been determined by the virial coefficient and not  by the equalities 
given here.) 

It is found f rom Table  2 that  for a closed shell system (Ne) the Cou lomb  energies 
agree term-wise for every orbital between H F  (Xa) and Xe. The exchange energies 
do not  agree for every orbital, as one would expect f rom a statistical method,  but  
only in their sum. The same type of agreement  is found for the total energy. 

We would  come to a lmost  the same general conclusions for the Xef l -method 
if we would  use two-thirds for a and flvt, the varial theorem value [8] for ft. How-  
ever, if we employ the universal, Z- independent  exchange potential  in form of 
the XFef l -me thod  with its obvious advantages,  then the H F  (XFefl) virial theorem 
is not  satisfied (Table 3). The reason that  the virial theorem is not  even valid 
within the X~fl-scheme is due to the use of  the "convergence factor" for G(O) [11]. 

In Table 3 the weighted sums of  the particular terms to the total energies are 
listed for an open shell system (fluorine). If  we first concentrate  on the X%, results, 
it can be seen that, in contras t  to  a closed shell system, the Cou lomb  and exchange 
terms do not  agree seperately between HF(Xe)  and Xe, but  only in their sum. 

Summarizing,  we find that  for a closed shell a tom the Xa-me thod  differs 
only in the exchange term from HF.  This term is replaced by a statistical approxi-  
mat ion  which leads to the same total exchange energy. For  an open shell system 
only the sum of the total exchange energy plus the Cou lomb  energy remain the 
same for H F  and Xc~ with a~t, as ment ioned in Ref. [12]. 

5. Z-Dependence of ~vt Analyzed in Terms of the XF~fl-Method 

For  a number  of  a toms XFo~fl calculations have been performed as described 
in Ref. [8]. F r o m  these results the Z-dependence of  %~ in the Xe-me thod  can be 
explained quantitatively. A qualitative unders tanding has already been given in 
Section 3. 

The general idea is to find an ~ which would  lead to the same exchange energy 
in a hypothet ical  X~-calculat ion (using Xefl orbitals) than the current Xafl  calcula- 
t ion has given. If  we would  use flvt instead of  the fixed fl-value of  0.003, it would  
be sufficient to look at the exchange energy. But in the XF~f l -method we have 
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to correct for this fixed fl, because the exchange energy and therefore also the 
statistical total energy are different for Xa~t and XFafl. This result can be checked 
in Tables 2 and 3. It can also be seen that the HF total energy computed with 
XFafl orbitals is very nearly the same as that computed with Xo M orbitals, i.e. 

<HF(XF~fl)> ,,~ (HF  (Xa~,)> = E,t(X~vt ) (8) 

where the last equality follows from (6). Using (4) the statistical total energy 
for ~t  is given by the formula 

E s t ( X c % t  ) - ( I  J-  1E~I~  , 1_ E - - ~ - ~ -  cJx=~• x,v~ (9) 

where the subscript on the RHS indicates that these integrals have been evaluated 
using X~t-orbitals. The LHS can be approximated by <HF (XFafl)>. From Tables 2 
or 3 we see that the first two terms in the statistical total energy agree fairly well 
between Xa~t and XF~fl. Thus we can use the value obtained from the XF=fl- 
calculation. The remaining term in (9) is the exchange energy. The a-term (from 
the first term in Eq. (5) of the Xafl exchange (Ex,p) can be scaled by a new exchange 
parameter a in order to approximate Ex=o. Using these approximations (9) can 
be rewritten 

(HF(XF~fl)> = (1+ 1~- ~'\] 2-1"( Ex~ ] Ec ]xv~,t~ + ~ . (10) \ a }xv~a 

1 Adding and subtracting to the RHS ~Ex~e we obtain Est(XFafl). From this equa- 
tion a formula for a can be derived which contains only results from an XFafl- 
calculation. Using the fact that a is chosen to be two-thirds in XFafl, we get 

2 Ex~p + 2 [(HF(XFafl)> - E,,(XFafl)] 
a =  (ll)  

3 Ex~ 

If we would have used fl,,t instead of the fixed fl-value, the term in the square 
bracket vanishes and the formula for a simplifies to 

a =  2 {  Ex= e / (12) 
3 \ Ex=/x~p" 

The additional term in (11) is just for the correction for not having used fl,,t in 
the XFafi-method. 

Equation (12) can be interpreted in the following way: Instead of adding the 
inhomogeneity correction [fl-term in Eq. (5)] to the Xa-exchange with ~ equal 
to two-thirds, the same exchange energy can be obtained purely within the Xa- 
exchange framework by increasing a from two-thirds to a. 

Table 4 lists a-values computed within XFafl calculations as described in 
Ref. [8] using Eq. (11). A comparison with the corresponding a~t-values shows 
a remarkable good agreement. This demonstrates that the Z-dependence of a,t 
can be explained in a quantitative way by means of the Xafl-method. The quali- 
tative picture given in Section 3 is also correct. 
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Table 4. Comparison of c%t with ~, an c~-average obtained within an XFc~fl calculation using Eq. (11) 

Atom ~ ~vt 

He 2 0.77243 0.77236 
F 9 0.73727 0.73651 
Si 14 0.72758 0.72696 
Fe 26 0.71119 0.71094 
Rh 45 0.70204 0.70187 
Tb 65 0.69511 0.69501 
Rn 86 0.69244 0.69245 

6. Conclusion 

The  exchange p a r a m e t e r  ~ in the  X a - m e t h o d  has  been op t imized  for heavier  
a toms  (up to  Rn). The  va r i a t ion  of  ~ wi th  a tomic  number  Z can be expla ined  in 
te rms of  the  X~f l -me thod :  (a) qual i ta t ively ,  by cal l ing a t t en t ion  to the fact tha t  
the  i nhomogene i t y  co r rec t ion  (fl-term) becomes  less p r o n o u n c e d  for heavier  
a toms,  (b) quant i ta t ive ly ,  by  scal ing the X~-exchange in o rder  to ma tch  be tween 
X~ and  X~]~, 

F r o m  a c o m p a r i s o n  be tween H F  and  X~ it has been f o u n d  tha t  for c losed 
shell systems it is jus t  the  exchange  which is a p p r o x i m a t e d  in the X~-method .  
In  open  shell systems, however ,  only  the sum of  the C o u l o m b  plus exchange 
energy remains  the same for H F  and  X~. 

Both,  the in t e rp re t a t ion  of  the  Z - d e p e n d e n c e  of ~ in terms of the X~f l -me thod  
and  also the differences, which  occur  for c losed shell and  open shell sys tems ,  
should  p rov ide  add i t i ona l  ins ight  in the s tat is t ical  a p p r o x i m a t i o n s  in form of  
the X~ or  X~f l -method.  
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